

6.004 Worksheet - 1 of 11 - L02 – RISC-V Assembly

Computational Instructions

R-type: Register-register instructions: opcode = OP = 0110011

Assembly instr: oper rd, rs1, rs2
Behavior: reg[rd] <= reg[rs1] oper reg[rs2]

SLT – Set less than
SLTU – Set less than unsigned
SLL – Shift left logical
SRL – Shift right logical
SRA – Shift right arithmetic

I-type: Register-immediate instructions: with opcode = OP-IMM = 0010011

Arithmetic Comparisons Logical Shifts

ADDI SLTI, SLTIU ANDI, ORI, XORI SLLI, SRLI, SRAI

Assembly instr: oper rd, rs1, immI

Behavior: imm = signExtend(immI)
 reg[rd] <= reg[rs1] oper imm

Same functions as R-type except SUBI is not needed.
Function is encoded in funct3 bits plus instr[30]. Instr[30] = 1 for SRAI. So SRLI and SRAI use
same funct3 encoding.
immI is a 12 bit constant.

U-type: opcode = LUI or AUIPC = (01|00)10111

LUI – load upper immediate
AUIPC – add upper immediate to PC

Arithmetic Comparisons Logical Shifts

ADD, SUB SLT, SLTU AND, OR, XOR SLL, SRL, SRA

6.004 Tutorial Problems
L02 – RISC-V Assembly

6.004 Worksheet - 2 of 11 - L02 – RISC-V Assembly

Assembly instr: lui rd, immU

Behavior: imm = {immU,12’b0}
 Reg[rd] <= imm

For example lui x2, 2 would load register x2 with 0x2000.
immU is a 20 bit constant.

Load Store Instructions

I-type: Load: with opcode = LOAD = 0000011

LW – load word

Assembly instr: lw rd, immI(rs1)

Behavior: imm = signExtend(immI)
 Reg[rd] <= Mem[R[rs1] + imm]

S-type: Store: opcode = STORE = 0100011

SW – store word

Assembly instr: sw rs2, immS(rs1)

Behavior: imm = signExtend(immS)
 Mem[R[rs1] + imm] <= R[rs2]
immS is a 12 bit constant.

Control Instructions

SB-type: Conditional Branches: opcode = 1100011

Assembly instr: oper rs1, rs2, label

Behavior: imm = distance to label in bytes = {immS[12:1],0}
 pc <= (R[rs1] comp R[rs2]) ? pc + imm : pc + 4

Compares register rs1 to rs2. If comparison is true then pc is updated with pc + imm, otherwise
pc becomes pc + 4. Comparison type is defined by operation.

BEQ – branch if equal (==)
BNE – branch if not equal (!=)
BLT – branch if less than (<)
BGE – branch if greater than or equal (>=)
BLTU – branch if less than using unsigned numbers (< unsigned)
BGEU – branch if greater than or equal using unsigned numbers (>= unsigned)

6.004 Worksheet - 3 of 11 - L02 – RISC-V Assembly

UJ-type: Unconditional Jumps: opcode = JAL = 1101111

Assembly instr: JAL rd, label

Behavior: imm = distance to label in bytes = {immU{20:1},0}
 pc[rd] <= pc + 4; pc <= pc + imm

I-type: Unconditional Jump: opcode = JALR = 1100111

Assembly instr: JALR rd, rs1, immI

Behavior: imm = signExtend(immI)
 pc[rd] <= pc + 4; pc <= (R[rs1]+imm) & ~0x01
 (zero out the bottom bit of pc)

JAL – jump and link
JALR – jump and link register

immJ is a 20 bit constant (used by JAL)
immI is a 12 bit constant (used bye JALR)

Common pseudoinstructions:

j label = jal x0, label (ignore return address)

li x1, 0x1000 = lui x1, 1
li x1, 0x1100 = lui x1, 1; addi x1, x1, 0x100
li x4, 3 = addi x4, x0, 3

mv x3, x2 = addi x3, x2, 0

beqz x1, target = beq x1, x0, target
bneqz x1, target = bneq x1, x0, target

6.004 Worksheet - 4 of 11 - L02 – RISC-V Assembly

6.004 Worksheet - 5 of 11 - L02 – RISC-V Assembly

6.004 Worksheet - 6 of 11 - L02 – RISC-V Assembly

Note: A small subset of essential problems are marked with a red star (). We especially
encourage you to try these out before recitation.

Problem 1.

Compile the following expressions to RISCV assembly. Assume a is stored at address 0x1000, b
is stored at 0x1004, and c is stored at 0x1008.

1. a = b + 3c; 

With a, b, and c being stored at addresses 0x1000, 0x1004, and 0x1008, each of these solutions
are loosely structured in the following way:

1) Load a,b,c with LW
2) Perform operation
3) Store result with SW

Note that we do not have a multiplication instruction. We compute 3c with c << 1 + c. A left bit-
shift by 1 (slli) is equivalent to multiplication by 2. Additionally, when loading, we use the offset
field of the LW instruction to read the correct address. 8(x1) = 0x1000+8 = 0x1008, 4(x1) =
0x1004

 // 1. Load values a,b,c

li x1, 0x1000 // actually lui x1, 1
lw x2, 8(x1) // x2 = c, use offset to get 0x1008
lw x3, 4(x1) // x3 = b, use offset to get 0x1004

 // 2. Calculate a = b + 3c
slli x4, x2, 1 // x4 = x2 << 1 = 2c
add x4, x4, x2 // x4 = 2c + c = 3c
add x4, x4, x3 // x4 = 3c + b
// 3. Store value into a
sw x4, 0(x1) // store x4 into a

2. if (a > b) c = 17; 

We use branching to implement the IF statement, where the load for c=17 is skipped if the
condition a > b is not satisfied.

li x1, 0x1000 // actually lui x1, 1
lw x2, 0(x1) // x2 = a
lw x3, 4(x1) // x3 = b
// branch to end if a <=b (or b >=a)
bge x3, x2, end
li x4, 17 // actually just addi x4, x0, 17
sw x4, 8(x1) // c = 17
end:

6.004 Worksheet - 7 of 11 - L02 – RISC-V Assembly

3. sum = 0;
for (i = 0; i < 10; i = i+1) sum += i;

Registers:
 x1: sum – cumulative sum
 x2: i – index
 x3: 10 – condition for FOR loop (i < 10).

We loop by checking for the condition (i < 10), and branching to the loop body beginning while
the condition is met. There are no branch instructions that take an immediate, so we need to first
store value 10 into a register, and then do a branch instruction comparing to the register.

addi x1, x0, 0 // x1 = 0 (sum)
addi x2, x0, 0 // x2 = 0 (i)
addi x3, x0, 10 // x3 = 10
loop:
add x1, x1, x2 // x1 = x1 + x2 or sum = sum + i
addi x2, x2, 1 // i = i+1
// if i < 10, branch to beginning of loop body
blt x2, x3, loop

6.004 Worksheet - 8 of 11 - L02 – RISC-V Assembly

Problem 2. 

Compile the following expression assuming that a is stored at address 0x1100, and b is stored at
0x1200, and c is stored at 0x2000. Assume a, b, and c are arrays whose elements are stored in
consecutive memory locations.

for (i = 0; i < 10; i = i+1) c[i] = a[i] + b[i];

Registers:

 x1: address of a[0]
 x2: address of c[0]
 x3: i – index
 x4: 4i – because of the length of a word, we multiply the i by 4 to get the right offset

o RISC-V memory is indexed by byte and each word is four bytes long
 x5: address of a[i]
 x6: address of c[i]
 x7: 1) value of a[i], 2) a[i] + b[i]
 x8: value of b[i]
 x9: 10 – condition for FOR loop (i < 10)

The loop is implemented identically to above in Problem 1-3. We must first obtain the address
given index i, which is 0x1100 + 4i for a[i], 0x1200 + 4i for b[i], and 0x2000 for c[i]

li x1, 0x1100 // x1 = address of a[0] (lui x1, 1; addi x1, x1, 0x100)
li x2, 0x2000 // x2 = address of c[0] (lui x2, 2)
li x3, 0 // x3 = 0 (i) (addi x3, x0, 0)
li x9, 10
loop:
sll x4, x3, 2 // x4 = 4 * i
add x5, x1, x4 // x5 = address of a[i]
add x6, x2, x4 // x6 = address of c[i]
lw x7, 0(x5) // x7 = a[i]
lw x8, 0x100(x5) // x8 = b[i]; b is offset from a by 0x100
add x7, x7, x8 // x7 = a[i] + b[i]
sw x7, 0(x6) // c[i] = a[i] + b[i]
addi x3, x3, 1 // i = i + 1
blt x3, x9, loop // branch back to loop if i < 10

6.004 Worksheet - 9 of 11 - L02 – RISC-V Assembly

Problem 3.

Hand assemble the following sequence of instructions into its equivalent binary encoding.

loop:
addi x1, x1, -1 
bnez x1, loop

addi x1, x1, -1
-1 encoded as 12 bits is 0xfff
x1 in 5 bits is 0b00001
func3 for addi = 000
op = 0010011 (since addi is a register-immediate instruction)

addi: imm[11:0],rs1,func3,rd,op = 0xfff08093 =
0b111111111111_00001_000_00001_0010011

bnez x1, loop = bne x1, x0, loop
x1 in 5 bits 0b00001 = rs1
x0 in 5 bits is 0b00000 = rs2
func3 for bne = 001
op = 1100011
We store the offset to the label, which is -4 (0b100), into the immediate value. Since the least
significant bit (bottom bit) is always 0 with the offset, we can store bits 12:1 of the immediate
value into the instruction. Using bits 12:1 doubles the max offset of branches as compared to
11:1.
imm[12:1] = distance to label in bytes / 2 = -2 = 0xffe
imm[12] = 1
imm[11] = 1
imm[10:5] = 0b111111
imm[4:1] = 0b1110

bnez: imm[12],imm[10:5],rs2,rs1,func3,imm[4:1],imm[11],op = 0xfe009ee3 =
0b1_111111_00000_00001_001_1110_1_1100011

6.004 Worksheet - 10 of 11 - L02 – RISC-V Assembly

Problem 4.

A) Assume that the registers are initialized to: x1=8, x2=10, x3=12, x4=0x1234, x5=24 before
execution of each of the following assembly instructions. For each instruction, provide the
value of the specified register or memory location. If your answers are in hexadecimal,
make sure to prepend them with the prefix 0x.

1. SLL x6, x4, x5 Value of x6: __0x34000000__________ 

We shift left 0x1234 (x4) by 24 (x5) into x6:
0x1234 << 24 = 0x1234000000
However, since we are working in 32bits, we truncate correspondingly to get: 0x34000000

2. ADD x7, x3, x2 Value of x7: ___22_________

We add 12 (x3) by x2 (10) into x7: 12 + 10 = 22

3. ADDI x8, x1, 2 Value of x8: ___10_________

We add 8 (x1) by constant 2 into x8: 8 + 2 = 10

4. SW x2, 4(x4) Value stored: __10____ at address: ___0x1238_______ 

x2 is the value we are writing into the address at x4 + 4
x2 = 10 (value stored)
x4 + 4 = 0x1234 + 4 = 0x1238

B) Assume X is at address 0x1CE8

 Value left in x4? 0x_87654321______________

 Value left in x2? 0x_F8765432______________

Line by line decomposition:
1. x1 = 0x1CE8 – load value 0x1CE8 into x1
2. x4 = 0x87654321 – load word at address x1 + 0 = 0x1CE8 into x4
3. Branch into L1 – if (0x87654321 < 0), then jump to L1
4. x2 = 0xF876432 – 0x87654321 >> 4 into x2 (right shift arithmetic)

 li x1, 0x1CE8
 lw x4, 0(x1)
 blt x4, x0, L1
 addi x2, x0, 17
 beq x0, x0, L2
L1: srai x2, x4, 4
L2:

X: .word 0x87654321

6.004 Worksheet - 11 of 11 - L02 – RISC-V Assembly

Problem 5.

Compile the following Fibonacci implementation to RISCV assembly.

Reference Fibonacci implementation in Python
def fibonacci_iterative(n):
 if n == 0:
 return 0
 n -= 1
 x, y = 0, 1
 while n > 0:
 # Parallel assignment of x and y
 # The new values for x and y are computed at the same time, and then
 # the values of x and y are updated afterwards
 x, y = y, x + y
 n -= 1
 return y

Registers:

 x1: n
 x2: y (final result)
 x3: x
 x5: x + y

// x1 = n
// x2 = final result
bne x1, x0, start // branch if n!=0
li x2, 0
j end // pseudo instruction for jal x0, end
start:
addi x1, x1, -1 // n = n - 1
li x3, 0 // x = 0
li x2, 1 // y = 1 (you're returning y at the end, so use x2 to hold y)
loop:
bge x0, x1, end // stop loop if 0 >= n
addi x5, x3, x2 // tmp = x + y
mv x3, x2 // x = y (pseudo instruction for addi x3, x2, 0)
mv x2, x5 // y = tmp (pseudo instruction for addi x2, x5, 0)
addi x1, x1, -1 // n = n - 1
j loop // pseudo instruction for jal x0, loop
end:

